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Σ-protocols in the wild - 1

Here are some examples of things that are based on

the Σ-protocol:

BIP340 .. edDSA .. ECDSA (kinda)

Anonymous credentials (used in e.g. Brave,

Wabisabi, Signal)
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Core concepts:

Proving without revealing (ZKPs)



Zero knowledge, intuitively - 1

Start with a silly analogy:

� Coke’s secret recipe. You claim to know coke’s

secret recipe? ok, here’s 10000 ingredients in a

kitchen. I’ll walk away for a day but keep you

locked in the kitchen. Make me a glass of Coke.
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Zero knowledge, intuitively - 2

� Claim: challenge: demonstrate - this is the

Σ-protocol paradigm.

� To win at this game, you have to be ready to

create a demonstration for any challenge.

� But your demonstration shouldn’t give away the

secret sauce ..
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Zero knowledge, intuitively - 3

Another intuition - coin flip over a telephone line.

� We assign 1BTC based on whether you succeed

in ’calling’ the coin flip.

� Since there’s a big incentive to cheat, this

wouldn’t work over a telephone call, because the

side who reveals their (choice or flip)second can

always win.

� This example illustrates the idea of a

commitment - hand fixes and hides the coin,

that’s a commitment.
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Homomorphism

G1 =⇒ G2

Example: f (x) = 2x ; suppose G1 = (Z,+).

What is G2?

2 · (a + b) ≡ 2 · a + 2 · b. Why is this so important?
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Homomorphism - 2

Cryptography: just encrypt/hide?

We want to do stuff under the encryption.

Guarantee correctness without knowledge.

16 + 4 = 20← 8 + 2 = 10.

Except for functions f that are not invertible!

a · G + b · G = c · G ← a + b = c

10/28
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Schnorr ID protocol

Hard to prove you know without revealing?

To make it easier, prove two things instead!

Say secret x , for public P .

Make new secret k for public R .

Prover P =⇒ R =⇒ Verifier V .

P ⇐= c ⇐= V
P =⇒ “response” =⇒ V .
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Schnorr ID protocol - 2
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Schnorr ID protocol - 2

Why is it “sigma”? ( )

(EC)DL only? RSA, lattices - anything with

homomorphism. 12/28
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Schnorr ID protocol - 3

But what does this achieve?

The “response” is unencrypted: s = k + cx

But the verification is encrypted: s · G = R + c · P
Verifier V only tastes the Coca Cola!

k hides the first secret x .

c binds/fixes the secret (P can’t predict it).

Exactly because there is a homomorphism

for EC point addition, it works!
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The Fiat-Shamir transform

The Schnorr ID protocol is interactive

, computationally “sound” and “HVZK”.

What if we fake the challenge? (like Fiat!).

so — make a random challenge be a hash of R!

c = H(R |P |..), so s = k + H(R |P |..)x .

Domain separation tags? See BIP340 Htag()
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The Fiat-Shamir transform - 2

Generalize: hash the conversation transcript up to

the challenge.
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The Fiat-Shamir transform - 2

Generalize: hash the conversation transcript up to

the challenge.

FS transform takes an interactive identity

protocol and ...

converts it into a signature scheme. We can attach

any message we like into the transcript.

Signatures are transferrable - the identity protocol is

“deniable.” Security is based on the “Random

Oracle Model”.

15/28



The Fiat-Shamir transform - 3
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The Fiat-Shamir transform - 3

Note that V must be able to recreate c as the hash

(of R , etc.)

16/28



Increasing the power level:

COMBINING Σ-protocols



An AND of Σ-protocols

Suppose you want to prove knowledge of x1, x2 for

P1,P2
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An AND of Σ-protocols

Suppose you want to prove knowledge of x1, x2 for

P1,P2

Quiz: can you do this in a more compact way than

just running the Σ-protocol twice?

Answer: share the challenge.

k1, k2 =⇒ R1,R2 =⇒ V
P ⇐= c ⇐=

s1 = k1 + cx1, s2 = k2 + cx2

V : s1 · G
?
= R1 + c · P1 ∧ s2 · G

?
= R2 + c · P2.
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An AND of Σ-protocols - 2

Quiz: what should be in the H in this case?
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An AND of Σ-protocols - 2

Quiz: what should be in the H in this case?

Answer: R1,R2,P1,P2, . . ..
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I know 1 of x1, x2 for P1,P2.
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An OR of Σ-protocols

I know 1 of x1, x2 for P1,P2.

CDS 94 (but AOS 2002 is better):

P : Choose s1, c1 and k2. Calculate:

R1 = s1 · G − c1 · P1,R2 = k2 · G
Send R1,R2 to V .

V sends single challenge c .

P : c2 = c ⊕ c1, s2 = k2 + c2x2, send (s1, s2), (c1, c2)

V : sn · G
?
= Rn + cn · Pn ∧ c

?
= c1 ⊕ c2

19/28



An OR of Σ-protocols - 2

Nice trick! ⊕ perfectly hides which “signature

equation” sn = kn + cxn is real and which are faked.
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An OR of Σ-protocols - 2

Nice trick! ⊕ perfectly hides which “signature

equation” sn = kn + cxn is real and which are faked.

Wagner?

AOS style is different: form a causal loop over the

whole set of 4 by each challenge hashing the

previous index. More efficient.
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Special case AND - DLEQs

Equality of the discrete log of two points w.r.t. two

bases G ,H .
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Special case AND - DLEQs

Equality of the discrete log of two points w.r.t. two

bases G ,H .

P = x · G ∧ Q = x · H .

P : k =⇒ R1 = k · G ,R2 = k · H =⇒
⇐= c ⇐= V
P sends one response: s = k + cx

V checks: s · G ?
= R1 + c · P ∧ s · H ?

= R2 + c · Q.

21/28



Many keys in linear relationships
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3x1 + 10x2 = 15
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Many keys in linear relationships

Give P1 = x1 · G1,P2 = x2 · G2, prove in ZK that

3x1 + 10x2 = 15

Choose two commitments R1 = k1 · G1,R2 = k2 · G2,

where 3k1 + 10k2 = 0

F-S: c = H(P1,P2,R1,R2,G1,G2)

Send proof: (c , s1 = k1 + cx1, s2 = k2 + cx2)

V : R1 := s1 · G1 − c · P1,R2 := s2 · G2 − c · P2

3s1 + 10s2
?
= 15c ∧ c

?
= H(P1,P2,R1,R2,G1,G2).

Can generalize to a whole set of linear simultaneous

equations
22/28



Conclusion



Homework!

Sketch an outline of a proof of knowledge of the

opening of a Pedersen commitment.

� CLUE: what is the homomorphism?

� (See: “Okamoto’s protocol for

representations”.)
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