
Σ-protocols

- and why they should matter to every Bitcoin thinker

Adam Gibson

3rd March 2022

Advancing Bitcoin

1/28

Outline

Outline

� Motivation Σ-protocols in the wild

� ZK Analogies; zero knowledge

� Homomorphism the special property needed

for Σ-protocols

� The most fundamental Σ-protocol

� The Fiat-Shamir transform

� Combinations of Σ-protocols - AND, OR,

...

2/28

Outline

� Motivation Σ-protocols in the wild

� ZK Analogies; zero knowledge

� Homomorphism the special property needed

for Σ-protocols

� The most fundamental Σ-protocol

� The Fiat-Shamir transform

� Combinations of Σ-protocols - AND, OR,

...

2/28

Outline

� Motivation Σ-protocols in the wild

� ZK Analogies; zero knowledge

� Homomorphism the special property needed

for Σ-protocols

� The most fundamental Σ-protocol

� The Fiat-Shamir transform

� Combinations of Σ-protocols - AND, OR,

...

2/28

Outline

� Motivation Σ-protocols in the wild

� ZK Analogies; zero knowledge

� Homomorphism the special property needed

for Σ-protocols

� The most fundamental Σ-protocol

� The Fiat-Shamir transform

� Combinations of Σ-protocols - AND, OR,

...

2/28

Outline

� Motivation Σ-protocols in the wild

� ZK Analogies; zero knowledge

� Homomorphism the special property needed

for Σ-protocols

� The most fundamental Σ-protocol

� The Fiat-Shamir transform

� Combinations of Σ-protocols - AND, OR,

...

2/28

Outline

� Motivation Σ-protocols in the wild

� ZK Analogies; zero knowledge

� Homomorphism the special property needed

for Σ-protocols

� The most fundamental Σ-protocol

� The Fiat-Shamir transform

� Combinations of Σ-protocols - AND, OR,

...

2/28

Sigma protocols in the wild

Σ-protocols in the wild - 0

3/28

Σ-protocols in the wild - 1

Here are some examples of things that are based on

the Σ-protocol:

4/28

Σ-protocols in the wild - 1

Here are some examples of things that are based on

the Σ-protocol:

BIP340 .. edDSA .. ECDSA (kinda)

4/28

Σ-protocols in the wild - 1

Here are some examples of things that are based on

the Σ-protocol:

BIP340 .. edDSA .. ECDSA (kinda)

Anonymous credentials (used in e.g. Brave,

Wabisabi, Signal)

4/28

Σ-protocols in the wild - 2

”DLEQ”s - Privacy pass, Joinmarket, ECDSA

signature adaptors

5/28

Σ-protocols in the wild - 2

”DLEQ”s - Privacy pass, Joinmarket, ECDSA

signature adaptors

(Schnorr) blind sigs; Chaumian tokens (see also

Brands, see Fedimint, OT etc.)

5/28

Σ-protocols in the wild - 2

”DLEQ”s - Privacy pass, Joinmarket, ECDSA

signature adaptors

(Schnorr) blind sigs; Chaumian tokens (see also

Brands, see Fedimint, OT etc.)

ring sigs (Monero e.g.), multisigs, threshold sigs.

5/28

Σ-protocols in the wild - 2

”DLEQ”s - Privacy pass, Joinmarket, ECDSA

signature adaptors

(Schnorr) blind sigs; Chaumian tokens (see also

Brands, see Fedimint, OT etc.)

ring sigs (Monero e.g.), multisigs, threshold sigs.

ZKP: Bulletproofs (extended); zkSNARKs? (not

really)

5/28

Σ-protocols in the wild - 2

”DLEQ”s - Privacy pass, Joinmarket, ECDSA

signature adaptors

(Schnorr) blind sigs; Chaumian tokens (see also

Brands, see Fedimint, OT etc.)

ring sigs (Monero e.g.), multisigs, threshold sigs.

ZKP: Bulletproofs (extended); zkSNARKs? (not

really)

PAKE

5/28

Σ-protocols in the wild - 2

”DLEQ”s - Privacy pass, Joinmarket, ECDSA

signature adaptors

(Schnorr) blind sigs; Chaumian tokens (see also

Brands, see Fedimint, OT etc.)

ring sigs (Monero e.g.), multisigs, threshold sigs.

ZKP: Bulletproofs (extended); zkSNARKs? (not

really)

PAKE

5/28

Core concepts:

Proving without revealing (ZKPs)

Zero knowledge, intuitively - 1

Start with a silly analogy:

� Coke’s secret recipe. You claim to know coke’s

secret recipe? ok, here’s 10000 ingredients in a

kitchen. I’ll walk away for a day but keep you

locked in the kitchen. Make me a glass of Coke.

6/28

Zero knowledge, intuitively - 1

Start with a silly analogy:

� Coke’s secret recipe. You claim to know coke’s

secret recipe? ok, here’s 10000 ingredients in a

kitchen. I’ll walk away for a day but keep you

locked in the kitchen. Make me a glass of Coke.

6/28

Zero knowledge, intuitively - 2

� Claim: challenge: demonstrate - this is the

Σ-protocol paradigm.

� To win at this game, you have to be ready to

create a demonstration for any challenge.

� But your demonstration shouldn’t give away the

secret sauce ..

7/28

Zero knowledge, intuitively - 2

� Claim: challenge: demonstrate - this is the

Σ-protocol paradigm.

� To win at this game, you have to be ready to

create a demonstration for any challenge.

� But your demonstration shouldn’t give away the

secret sauce ..

7/28

Zero knowledge, intuitively - 2

� Claim: challenge: demonstrate - this is the

Σ-protocol paradigm.

� To win at this game, you have to be ready to

create a demonstration for any challenge.

� But your demonstration shouldn’t give away the

secret sauce ..

7/28

Zero knowledge, intuitively - 3

Another intuition - coin flip over a telephone line.

� We assign 1BTC based on whether you succeed

in ’calling’ the coin flip.

� Since there’s a big incentive to cheat, this

wouldn’t work over a telephone call, because the

side who reveals their (choice or flip)second can

always win.

� This example illustrates the idea of a

commitment - hand fixes and hides the coin,

that’s a commitment.

8/28

Zero knowledge, intuitively - 3

Another intuition - coin flip over a telephone line.

� We assign 1BTC based on whether you succeed

in ’calling’ the coin flip.

� Since there’s a big incentive to cheat, this

wouldn’t work over a telephone call, because the

side who reveals their (choice or flip)second can

always win.

� This example illustrates the idea of a

commitment - hand fixes and hides the coin,

that’s a commitment.

8/28

Zero knowledge, intuitively - 3

Another intuition - coin flip over a telephone line.

� We assign 1BTC based on whether you succeed

in ’calling’ the coin flip.

� Since there’s a big incentive to cheat, this

wouldn’t work over a telephone call, because the

side who reveals their (choice or flip)second can

always win.

� This example illustrates the idea of a

commitment - hand fixes and hides the coin,

that’s a commitment.
8/28

Homomorphisms

Homomorphism

G1 =⇒ G2

9/28

Homomorphism

G1 =⇒ G2

Example: f (x) = 2x ; suppose G1 = (Z,+).

What is G2?

9/28

Homomorphism

G1 =⇒ G2

Example: f (x) = 2x ; suppose G1 = (Z,+).

What is G2?

2 · (a + b) ≡ 2 · a + 2 · b.

9/28

Homomorphism

G1 =⇒ G2

Example: f (x) = 2x ; suppose G1 = (Z,+).

What is G2?

2 · (a + b) ≡ 2 · a + 2 · b. Why is this so important?

9/28

Homomorphism - 2

Cryptography: just encrypt/hide?

10/28

Homomorphism - 2

Cryptography: just encrypt/hide?

We want to do stuff under the encryption.

10/28

Homomorphism - 2

Cryptography: just encrypt/hide?

We want to do stuff under the encryption.

Guarantee correctness without knowledge.

10/28

Homomorphism - 2

Cryptography: just encrypt/hide?

We want to do stuff under the encryption.

Guarantee correctness without knowledge.

16 + 4 = 20← 8 + 2 = 10.

10/28

Homomorphism - 2

Cryptography: just encrypt/hide?

We want to do stuff under the encryption.

Guarantee correctness without knowledge.

16 + 4 = 20← 8 + 2 = 10.

Except for functions f that are not invertible!

10/28

Homomorphism - 2

Cryptography: just encrypt/hide?

We want to do stuff under the encryption.

Guarantee correctness without knowledge.

16 + 4 = 20← 8 + 2 = 10.

Except for functions f that are not invertible!

a · G + b · G = c · G ← a + b = c

10/28

The canonical Σ-protocol

Schnorr ID protocol

Hard to prove you know without revealing?

11/28

Schnorr ID protocol

Hard to prove you know without revealing?

To make it easier, prove two things instead!

11/28

Schnorr ID protocol

Hard to prove you know without revealing?

To make it easier, prove two things instead!

Say secret x , for public P .

Make new secret k for public R .

11/28

Schnorr ID protocol

Hard to prove you know without revealing?

To make it easier, prove two things instead!

Say secret x , for public P .

Make new secret k for public R .

Prover P =⇒ R =⇒ Verifier V .

11/28

Schnorr ID protocol

Hard to prove you know without revealing?

To make it easier, prove two things instead!

Say secret x , for public P .

Make new secret k for public R .

Prover P =⇒ R =⇒ Verifier V .

P ⇐= c ⇐= V

11/28

Schnorr ID protocol

Hard to prove you know without revealing?

To make it easier, prove two things instead!

Say secret x , for public P .

Make new secret k for public R .

Prover P =⇒ R =⇒ Verifier V .

P ⇐= c ⇐= V
P =⇒ “response” =⇒ V .

11/28

Schnorr ID protocol - 2

Why is it “sigma”? ()

12/28

Schnorr ID protocol - 2

Why is it “sigma”? ()

12/28

Schnorr ID protocol - 2

Why is it “sigma”? ()

(EC)DL only? RSA, lattices - anything with

homomorphism. 12/28

Schnorr ID protocol - 3

But what does this achieve?

13/28

Schnorr ID protocol - 3

But what does this achieve?

The “response” is unencrypted: s = k + cx

13/28

Schnorr ID protocol - 3

But what does this achieve?

The “response” is unencrypted: s = k + cx

But the verification is encrypted: s · G = R + c · P

13/28

Schnorr ID protocol - 3

But what does this achieve?

The “response” is unencrypted: s = k + cx

But the verification is encrypted: s · G = R + c · P
Verifier V only tastes the Coca Cola!

13/28

Schnorr ID protocol - 3

But what does this achieve?

The “response” is unencrypted: s = k + cx

But the verification is encrypted: s · G = R + c · P
Verifier V only tastes the Coca Cola!

k hides the first secret x .

13/28

Schnorr ID protocol - 3

But what does this achieve?

The “response” is unencrypted: s = k + cx

But the verification is encrypted: s · G = R + c · P
Verifier V only tastes the Coca Cola!

k hides the first secret x .

c binds/fixes the secret (P can’t predict it).

13/28

Schnorr ID protocol - 3

But what does this achieve?

The “response” is unencrypted: s = k + cx

But the verification is encrypted: s · G = R + c · P
Verifier V only tastes the Coca Cola!

k hides the first secret x .

c binds/fixes the secret (P can’t predict it).

Exactly because there is a homomorphism

for EC point addition, it works!

13/28

The Fiat-Shamir transform

14/28

The Fiat-Shamir transform

The Schnorr ID protocol is interactive

14/28

The Fiat-Shamir transform

The Schnorr ID protocol is interactive

, computationally “sound” and “HVZK”.

14/28

The Fiat-Shamir transform

The Schnorr ID protocol is interactive

, computationally “sound” and “HVZK”.

What if we fake the challenge? (like Fiat!).

14/28

The Fiat-Shamir transform

The Schnorr ID protocol is interactive

, computationally “sound” and “HVZK”.

What if we fake the challenge? (like Fiat!).

so — make a random challenge be a hash of R!

14/28

The Fiat-Shamir transform

The Schnorr ID protocol is interactive

, computationally “sound” and “HVZK”.

What if we fake the challenge? (like Fiat!).

so — make a random challenge be a hash of R!

c = H(R |P |..), so s = k + H(R |P |..)x .

14/28

The Fiat-Shamir transform

The Schnorr ID protocol is interactive

, computationally “sound” and “HVZK”.

What if we fake the challenge? (like Fiat!).

so — make a random challenge be a hash of R!

c = H(R |P |..), so s = k + H(R |P |..)x .

Domain separation tags? See BIP340 Htag()

14/28

The Fiat-Shamir transform - 2

Generalize: hash the conversation transcript up to

the challenge.

15/28

The Fiat-Shamir transform - 2

Generalize: hash the conversation transcript up to

the challenge.

FS transform takes an interactive identity

protocol and ...

15/28

The Fiat-Shamir transform - 2

Generalize: hash the conversation transcript up to

the challenge.

FS transform takes an interactive identity

protocol and ...

converts it into a signature scheme. We can attach

any message we like into the transcript.

15/28

The Fiat-Shamir transform - 2

Generalize: hash the conversation transcript up to

the challenge.

FS transform takes an interactive identity

protocol and ...

converts it into a signature scheme. We can attach

any message we like into the transcript.

Signatures are transferrable - the identity protocol is

“deniable.”

15/28

The Fiat-Shamir transform - 2

Generalize: hash the conversation transcript up to

the challenge.

FS transform takes an interactive identity

protocol and ...

converts it into a signature scheme. We can attach

any message we like into the transcript.

Signatures are transferrable - the identity protocol is

“deniable.” Security is based on the “Random

Oracle Model”.

15/28

The Fiat-Shamir transform - 3

16/28

The Fiat-Shamir transform - 3

Note that V must be able to recreate c as the hash

(of R , etc.)

16/28

Increasing the power level:

COMBINING Σ-protocols

An AND of Σ-protocols

Suppose you want to prove knowledge of x1, x2 for

P1,P2

17/28

An AND of Σ-protocols

Suppose you want to prove knowledge of x1, x2 for

P1,P2

Quiz: can you do this in a more compact way than

just running the Σ-protocol twice?

17/28

An AND of Σ-protocols

Suppose you want to prove knowledge of x1, x2 for

P1,P2

Quiz: can you do this in a more compact way than

just running the Σ-protocol twice?

Answer: share the challenge.

17/28

An AND of Σ-protocols

Suppose you want to prove knowledge of x1, x2 for

P1,P2

Quiz: can you do this in a more compact way than

just running the Σ-protocol twice?

Answer: share the challenge.

k1, k2 =⇒ R1,R2 =⇒ V

17/28

An AND of Σ-protocols

Suppose you want to prove knowledge of x1, x2 for

P1,P2

Quiz: can you do this in a more compact way than

just running the Σ-protocol twice?

Answer: share the challenge.

k1, k2 =⇒ R1,R2 =⇒ V
P ⇐= c ⇐=

17/28

An AND of Σ-protocols

Suppose you want to prove knowledge of x1, x2 for

P1,P2

Quiz: can you do this in a more compact way than

just running the Σ-protocol twice?

Answer: share the challenge.

k1, k2 =⇒ R1,R2 =⇒ V
P ⇐= c ⇐=

s1 = k1 + cx1, s2 = k2 + cx2

17/28

An AND of Σ-protocols

Suppose you want to prove knowledge of x1, x2 for

P1,P2

Quiz: can you do this in a more compact way than

just running the Σ-protocol twice?

Answer: share the challenge.

k1, k2 =⇒ R1,R2 =⇒ V
P ⇐= c ⇐=

s1 = k1 + cx1, s2 = k2 + cx2

V : s1 · G
?
= R1 + c · P1 ∧ s2 · G

?
= R2 + c · P2.

17/28

An AND of Σ-protocols - 2

Quiz: what should be in the H in this case?

18/28

An AND of Σ-protocols - 2

Quiz: what should be in the H in this case?

Answer: R1,R2,P1,P2,

18/28

An OR of Σ-protocols

I know 1 of x1, x2 for P1,P2.

19/28

An OR of Σ-protocols

I know 1 of x1, x2 for P1,P2.

CDS 94 (but AOS 2002 is better):

19/28

An OR of Σ-protocols

I know 1 of x1, x2 for P1,P2.

CDS 94 (but AOS 2002 is better):

P : Choose s1, c1 and k2. Calculate:

19/28

An OR of Σ-protocols

I know 1 of x1, x2 for P1,P2.

CDS 94 (but AOS 2002 is better):

P : Choose s1, c1 and k2. Calculate:

R1 = s1 · G − c1 · P1,R2 = k2 · G

19/28

An OR of Σ-protocols

I know 1 of x1, x2 for P1,P2.

CDS 94 (but AOS 2002 is better):

P : Choose s1, c1 and k2. Calculate:

R1 = s1 · G − c1 · P1,R2 = k2 · G
Send R1,R2 to V .

19/28

An OR of Σ-protocols

I know 1 of x1, x2 for P1,P2.

CDS 94 (but AOS 2002 is better):

P : Choose s1, c1 and k2. Calculate:

R1 = s1 · G − c1 · P1,R2 = k2 · G
Send R1,R2 to V .

V sends single challenge c .

19/28

An OR of Σ-protocols

I know 1 of x1, x2 for P1,P2.

CDS 94 (but AOS 2002 is better):

P : Choose s1, c1 and k2. Calculate:

R1 = s1 · G − c1 · P1,R2 = k2 · G
Send R1,R2 to V .

V sends single challenge c .

P : c2 = c ⊕ c1, s2 = k2 + c2x2, send (s1, s2), (c1, c2)

19/28

An OR of Σ-protocols

I know 1 of x1, x2 for P1,P2.

CDS 94 (but AOS 2002 is better):

P : Choose s1, c1 and k2. Calculate:

R1 = s1 · G − c1 · P1,R2 = k2 · G
Send R1,R2 to V .

V sends single challenge c .

P : c2 = c ⊕ c1, s2 = k2 + c2x2, send (s1, s2), (c1, c2)

V : sn · G
?
= Rn + cn · Pn ∧ c

?
= c1 ⊕ c2

19/28

An OR of Σ-protocols - 2

Nice trick! ⊕ perfectly hides which “signature

equation” sn = kn + cxn is real and which are faked.

20/28

An OR of Σ-protocols - 2

Nice trick! ⊕ perfectly hides which “signature

equation” sn = kn + cxn is real and which are faked.

Wagner?

20/28

An OR of Σ-protocols - 2

Nice trick! ⊕ perfectly hides which “signature

equation” sn = kn + cxn is real and which are faked.

Wagner?

AOS style is different: form a causal loop over the

whole set of 4 by each challenge hashing the

previous index. More efficient.

20/28

Special case AND - DLEQs

Equality of the discrete log of two points w.r.t. two

bases G ,H .

21/28

Special case AND - DLEQs

Equality of the discrete log of two points w.r.t. two

bases G ,H .

P = x · G ∧ Q = x · H .

21/28

Special case AND - DLEQs

Equality of the discrete log of two points w.r.t. two

bases G ,H .

P = x · G ∧ Q = x · H .

P : k =⇒ R1 = k · G ,R2 = k · H =⇒

21/28

Special case AND - DLEQs

Equality of the discrete log of two points w.r.t. two

bases G ,H .

P = x · G ∧ Q = x · H .

P : k =⇒ R1 = k · G ,R2 = k · H =⇒
⇐= c ⇐= V

21/28

Special case AND - DLEQs

Equality of the discrete log of two points w.r.t. two

bases G ,H .

P = x · G ∧ Q = x · H .

P : k =⇒ R1 = k · G ,R2 = k · H =⇒
⇐= c ⇐= V
P sends one response: s = k + cx

21/28

Special case AND - DLEQs

Equality of the discrete log of two points w.r.t. two

bases G ,H .

P = x · G ∧ Q = x · H .

P : k =⇒ R1 = k · G ,R2 = k · H =⇒
⇐= c ⇐= V
P sends one response: s = k + cx

V checks: s · G ?
= R1 + c · P ∧ s · H ?

= R2 + c · Q.

21/28

Many keys in linear relationships

Give P1 = x1 · G1,P2 = x2 · G2, prove in ZK that

3x1 + 10x2 = 15

22/28

Many keys in linear relationships

Give P1 = x1 · G1,P2 = x2 · G2, prove in ZK that

3x1 + 10x2 = 15

Choose two commitments R1 = k1 · G1,R2 = k2 · G2,

where 3k1 + 10k2 = 0

22/28

Many keys in linear relationships

Give P1 = x1 · G1,P2 = x2 · G2, prove in ZK that

3x1 + 10x2 = 15

Choose two commitments R1 = k1 · G1,R2 = k2 · G2,

where 3k1 + 10k2 = 0

F-S: c = H(P1,P2,R1,R2,G1,G2)

22/28

Many keys in linear relationships

Give P1 = x1 · G1,P2 = x2 · G2, prove in ZK that

3x1 + 10x2 = 15

Choose two commitments R1 = k1 · G1,R2 = k2 · G2,

where 3k1 + 10k2 = 0

F-S: c = H(P1,P2,R1,R2,G1,G2)

Send proof: (c , s1 = k1 + cx1, s2 = k2 + cx2)

22/28

Many keys in linear relationships

Give P1 = x1 · G1,P2 = x2 · G2, prove in ZK that

3x1 + 10x2 = 15

Choose two commitments R1 = k1 · G1,R2 = k2 · G2,

where 3k1 + 10k2 = 0

F-S: c = H(P1,P2,R1,R2,G1,G2)

Send proof: (c , s1 = k1 + cx1, s2 = k2 + cx2)

V : R1 := s1 · G1 − c · P1,R2 := s2 · G2 − c · P2

22/28

Many keys in linear relationships

Give P1 = x1 · G1,P2 = x2 · G2, prove in ZK that

3x1 + 10x2 = 15

Choose two commitments R1 = k1 · G1,R2 = k2 · G2,

where 3k1 + 10k2 = 0

F-S: c = H(P1,P2,R1,R2,G1,G2)

Send proof: (c , s1 = k1 + cx1, s2 = k2 + cx2)

V : R1 := s1 · G1 − c · P1,R2 := s2 · G2 − c · P2

3s1 + 10s2
?
= 15c ∧ c

?
= H(P1,P2,R1,R2,G1,G2).

Can generalize to a whole set of linear simultaneous

equations
22/28

Conclusion

Homework!

Sketch an outline of a proof of knowledge of the

opening of a Pedersen commitment.

� CLUE: what is the homomorphism?

� (See: “Okamoto’s protocol for

representations”.)

23/28

Homework!

Sketch an outline of a proof of knowledge of the

opening of a Pedersen commitment.

C (a) = r · G + a · H

� CLUE: what is the homomorphism?

� (See: “Okamoto’s protocol for

representations”.)

23/28

Homework!

Sketch an outline of a proof of knowledge of the

opening of a Pedersen commitment.

C (a) = r · G + a · H
� CLUE: what is the homomorphism?

� (See: “Okamoto’s protocol for

representations”.)

23/28

Homework!

Sketch an outline of a proof of knowledge of the

opening of a Pedersen commitment.

C (a) = r · G + a · H
� CLUE: what is the homomorphism?

� (See: “Okamoto’s protocol for

representations”.)

23/28

References - 1

� Boneh and Shoup, see Chapter 19

� Dan Boneh on Σ-protocols - video lecture

� standardisation of Σ-protocols (survey)

� concept of DLEQ

� explainer on DLEQs

� Nadav Kohen on blind sigs

24/28

https://toc.cryptobook.us/
https://www.youtube.com/watch?v=wB3DlND7KEw
https://docs.zkproof.org/pages/standards/accepted-workshop4/proposal-sigma.pdf
http://crypto.stackexchange.com/questions/15758/how-can-we-prove-that-two-discrete-logarithms-are-equal
https://medium.com/crypto-garage/adaptor-signature-on-ecdsa-cac148dfa3ad
https://suredbits.com/schnorr-applications-blind-signatures/

References - 2

� How PrivacyPass uses DLEQs

� My Bulletproofs writeup

� Camenisch & Stadler ‘97 Proof systems for discrete logs

� Ring signatures - my blog

� Matt Green on PAKE

� Brands’ book on credentials (see also: uprove)

25/28

https://blog.cloudflare.com/privacy-pass-the-math/
https://github.com/AdamISZ/from0k2bp/blob/master/from0k2bp.pdf
https://crypto.ethz.ch/publications/files/CamSta97b.pdf
https://reyify.com/blog/ring-signatures
https://blog.cryptographyengineering.com/2018/10/19/lets-talk-about-pake/
http://www.credentica.com/the_mit_pressbook.html

References - 3

� BIP 340 Bitcoin Schnorr signatures

� Chaum’s original blind signatures paper

� Fedimint - federated Chaumian mints

� Open Transactions - earlier Chaumian mints

� Security proofs for Schnorr - my blog

� Lloyd Fournier on adaptors as ’otVES’

� Kohen on ECDSA adaptors via DLEQ

26/28

https://github.com/bitcoin/bips/blob/master/bip-0340.mediawiki
http://www.hit.bme.hu/~buttyan/courses/BMEVIHIM219/2009/Chaum.BlindSigForPayment.1982.PDF
https://fedimint.org/
http://www.opentransactions.org/wiki/Main_Page
https://reyify.com/blog/liars-cheats-scammers-and-the-schnorr-signature
https://github.com/LLFourn/one-time-VES/blob/master/main.pdf
https://lists.linuxfoundation.org/pipermail/lightning-dev/2019-November/002316.html

References - 4

� Gabizon on zkSNARKs

� Nadav Kohen on payment points (PTLCs)

� Wabisabi paper (anonymous credentials)

� WabiSabi and its precursors

� Algebraic MACs and Key-Verified Anonymous Credentials Chase,

Meiklejohn, Zaveruccha 2013

� Anonymous Credentials in Signal - Chase, Perrin, Zaveruccha 2019

27/28

https://electriccoin.co/blog/snark-explain/
https://suredbits.com/payment-points-part-1/
https://eprint.iacr.org/2021/206
https://reyify.com/blog/from-mac-to-wabisabi
https://eprint.iacr.org/2013/516
https://signal.org/blog/pdfs/signal_private_group_system.pdf

Thank you

Contact info:

@waxwing@x0f.org (mastodon)

https://github.com/AdamISZ

blog: https://reyify.com/blog (email there)

gpg: 4668 9728 A9F6 4B39 1FA8 71B7 B3AE 09F1

E9A3 197A

28/28

	Outline
	Sigma protocols in the wild
	Core concepts: Proving without revealing (ZKPs)
	Homomorphisms
	The canonical -protocol
	Increasing the power level: COMBINING -protocols
	Conclusion

