
We imagine n untrusting entities.
We’ll choose a number t, where 1 ≤ t ≤ n, as the “threshold”.
Each participant from 1 to n has their own polynomial; they keep the coefficients
aij secret:

f1(x) = a1,0 + a1,1x+ a1,2x
2 + . . .+ a1,t−1x

t−1

. . .

fn(x) = an,0 + an,1x+ an,2x
2 + . . .+ an,t−1x

t−1

Notice that t points on the curve of each polynomial fk(x) will always be enough
to recover the polynomial in total.
(As an example that’s easy to keep in your head: if the curve is a parabola, two
points are not enough to define it, but 3 are (here, t = 3 and t− 1 = 2 so x2 is
the highest power of the polynomial).)

The key insight of the Feldman “Verifiable Secret Sharing Design” is that you can
exploit the linearity of polynomials such that an overall secret can be recovered
using Lagrange interpolation, by combining the process for each participant.
Thus, consider the sum of the above:

F (x) =
n∑

k=1
fk(x)

The shared secret will be the evaluation of F at 0, i.e.
∑

k ak,0. To recover it,
you would need t evaluations of F , which would be deducible from t evaluations
of each fk (the linearity; just add them).

This is a good time to note that that never happens in these schemes. Unlike
a system like Shamir’s secret sharing, this represents a “distributed key gener-
ation” in which the overall “shared secret” is never reconstructed in one place.

This extremely powerful property extends further, in schemes like FROST: it’s
now possible to construct a proof of knowledge, and therefore a signature, using
that “shared secret”, by a distributed process between the untrusted parties,
where they do not reveal their “secret shares”.

So, the “private key” in this construct is F (0), hence the public key is Y =
F (0)G.

In a moment, we’ll talk about the “public key sharing” process, but first, let’s
see concretely how the individual participants’ secret shares relate to the overall
secret (which as we said - nobody ever sees!):

Each participant has a number assigned, from 1 to t.
This is the tricky part to understand, so I’ll use a concrete example.
Let’s suppose that n = 8; each participant in setup is assigned a number (1 . . . 8),
let’s suppose we are participant 3. Suppose t = 4, and it’s participants 2,4,7
and us (3) that want to do the collaborative signing.
We will have our own polynomial, f3(x), and as earlier noted, we will have

1



chosen the a3,j coefficients at random. So we’ll know f3(3). Now, the other
participants will give us fi(3) for i = 2, 4, 7 (we’ll talk about how this part can
be done safely below; for now, let’s just trust that we are given correct values).
The sum, f2(3) + f3(3) + f4(3) + f7(3), is our “secret share”. The other 3
participants will find their share analogously. Notice that this secret share is
actually F (3).
With 4 of those evaluations of F , you would be able to reconstruct F , and more
specifically, we could calculate F (0) using Lagrange interpolation:

F (0) = F (2) ×
(

(0 − 3) × (0 − 4) × (0 − 7)
(2 − 3)(2 − 4)(2 − 7)

)
+ F (3) ×

(
(0 − 2) × (0 − 4) × (0 − 7)

(3 − 2)(3 − 4)(3 − 7)

)
+ F (4) ×

(
(0 − 2) × (0 − 3) × (0 − 7)

(4 − 2)(4 − 3)(4 − 7)

)
+ F (7) ×

(
(0 − 2) × (0 − 3) × (0 − 4)

(7 − 2)(7 − 3)(7 − 4)

)
While the Lagrange formula is complicated, or at least, big, notice that it is a
very trivial arithmetic calculation.
Notice that it would work just as well with any four participants, because each
participant essentially “owns” an evaluation of F at a particular point, and we
only need 4 of them. If we have 5 or more, it still works.

But how do we sign without reconstructing the secret?

Recall the formula for a Schnorr signature on a private key x:
s = k + ex
... where k is a one time (secret) nonce, and e is the hash of the message. Recall
also that, because the equation is linear, then a naive aggregation is possible
(if, usually, unsafe):

s1 + s2 = (k1 + k2) + e(x1 + x2)

Now, as we have just established:

F (0) = λ2F (2) + λ3F (3) + λ4F (4) + λ7F (7)

where λi is the parenthetical term used in the above concrete calculation; it’s
a function of only the participants’ indices (e.g. for participant 2, λ2 is just
(−3 × −4 × −7)/((2 − 3)(2 − 4)(2 − 7))).

. . . and so, if that is the signing secret, then what we need overall is:

s = k + eF (0) = k + e (λ2F (2) + λ3F (3) + λ4F (4) + λ7F (7))

. . . which naturally leads to the idea that each participant should provide this
partial signature share:
si = ki + eλiF (i)

2



Adding these together will give a valid overall signature on the secret F (0),
without any participant ever seeing F (0), as long as k =

∑
i ki, and we have

addressed the cryptographic security of combining the values of k in a way which
doesn’t allow an adversarial participant to forge a signature or steal our secret.
This point is addressed in detail in both the FROST and MuSig(2) papers, in
detail (the solutions are basically the same, in each case. It would be a sidetrack
to go further into that, here).

Backing up: how do we share polynomial evaluations?

Remember that one of the first steps, is each participant giving evaluations of
their polynomials, to the others. So in our concrete example, as participant 3,
we need to be given f2(3) and f4(3) and f7(3). These will just be (32 byte in
typical cases) random numbers. Since the other guys’ polynomials are secret,
how do we know these values are correct? Here, we use the homomorphism of
the elliptic curve. We do something that’s sometimes described as “lifting the
polynomial into the exponent” (it used to make more sense when we used finite
fields instead of elliptic curves, but, whatever).

Consider that if you have

f1(x) = a1,0 + a1,1x+ a1,2x
2 + . . .+ a1,t−1x

t−1

then

f1(x)G = a1,0G+ a1,1xG+ a1,2x
2G+ . . .+ a1,t−1x

t−1G

where we’re using all the scalar values as multipliers for the generator point G
of the elliptic curve. Because polynomials have linearity, all calculations on the
scalars also work with curve points, with the crucial difference that you don’t
actually reveal the scalars. This allows the untrusting participants to prove to
each other that they are evaluating the polynomials honestly without screwing
up the security of the scheme by revealing their own polynomial coefficients.
To make this work, each participant gives all other participants, commitments
to every one of their coefficients, like this:
C4,0 = a4,0G, C4,1 = a4,1G . . . C4,t−1 = a4,t−1G

You’ll notice there’ll be a total of n×t such commitments; they are all points on
the curve. Once everyone has all of these, and once we’ve shared the evaluations
(like, for example participant 4 gives us, participant 3, f4(3)), we can now use
these commitments to check correctness:

f4(3)G =?C4,0 + 3C4,1 + 32C4,2 + . . . 33C4,3

Notice what’s going on here is: we have a polynomial f4 which, because t is 4, is
a cubic polynomial. We’re evaluating it at x = 3, but we’re doing the evaluation
of the polynomial entirely hidden behind the points on the curve. A good mental
model is that this is an encrypted polynomial evaluation. If it matches,
we know that we have been given a valid f4(3) and the same for all the other
indices.

3


